Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.419
Filtrar
1.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572830

RESUMO

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Assuntos
Betaproteobacteria , Cloretos , Peróxido de Hidrogênio , Oxirredutases , Propionatos , Peróxido de Hidrogênio/química , Catálise , Prótons , Concentração de Íons de Hidrogênio , Heme/química
2.
Biochemistry ; 63(7): 926-938, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489495

RESUMO

Progesterone receptor membrane component 1 (PGRMC1) binds heme via a surface-exposed site and displays some structural resemblance to cytochrome b5 despite their different functions. In the case of PGRMC1, it is the protein interaction with drug-metabolizing cytochrome P450s and the epidermal growth factor receptor that has garnered the most attention. These interactions are thought to result in a compromised ability to metabolize common chemotherapy agents and to enhance cancer cell proliferation. X-ray crystallography and immunoprecipitation data have suggested that heme-mediated PGRMC1 dimers are important for facilitating these interactions. However, more recent studies have called into question the requirement of heme binding for PGRMC1 dimerization. Our study employs spectroscopic and computational methods to probe and define heme binding and its impact on PGRMC1 dimerization. Fluorescence, electron paramagnetic resonance and circular dichroism spectroscopies confirm heme binding to apo-PGRMC1 and were used to demonstrate the stabilizing effect of heme on the wild-type protein. We also utilized variants (C129S and Y113F) to precisely define the contributions of disulfide bonds and direct heme coordination to PGRMC1 dimerization. Understanding the key factors involved in these processes has important implications for downstream protein-protein interactions that may influence the metabolism of chemotherapeutic agents. This work opens avenues for deeper exploration into the physiological significance of the truncated-PGRMC1 model and developing design principles for potential therapeutics to target PGRMC1 dimerization and downstream interactions.


Assuntos
Heme , Neoplasias , Receptores de Progesterona , Humanos , Proliferação de Células , Heme/química , Proteínas de Membrana/química , Neoplasias/metabolismo , Multimerização Proteica/genética , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo
3.
Food Chem ; 447: 138948, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513490

RESUMO

Impact of high-pressure processing (HP-P) on hemolymph and lipid globular structures of the edible portion (EP) of blood clams (BC) was investigated. HP-P above 400 MPa decreased heme iron content, while upsurged non-heme iron content. Increasing pressure induced gaps and abnormal hemocyte cell arrangements. However, HP-P at 300 MPa improved and maintained total hemocyte counts, the heme iron content, and a*-value in BC-EP. For lipid globular structures, the mean diameter drastically decreased when an HP-P pressure of 600 MPa was employed. HP-P at higher pressure induced lipid oxidation, along with decreases in monounsaturated and polyunsaturated fatty acids as well as increases in thiobarbituric acid reactive substances and peroxide value. FTIR spectra displayed a reduction in phosphate groups and cis double bonds in lipids from HP-P treated BC, compared to controls. Therefore, HP-P at 300 MPa is recommended for preparing ready-to-cook BC with less tissue damage and lipid oxidation.


Assuntos
Bivalves , Hemolinfa , Animais , Peroxidação de Lipídeos , Ácidos Graxos Insaturados , Heme/química , Ferro
4.
J Inorg Biochem ; 255: 112534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552360

RESUMO

The family of flavodiiron proteins (FDPs) plays an important role in the scavenging and detoxification of both molecular oxygen and nitric oxide. Using electrons from a flavin mononucleotide cofactor molecular oxygen is reduced to water and nitric oxide is reduced to nitrous oxide and water. While the mechanism for NO reduction in FDPs has been studied extensively, there is very little information available about O2 reduction. Here we use hybrid density functional theory (DFT) to study the mechanism for O2 reduction in FDPs. An important finding is that a proton coupled reduction is needed after the O2 molecule has bound to the diferrous diiron active site and before the OO bond can be cleaved. This is in contrast to the mechanism for NO reduction, where both NN bond formation and NO bond cleavage occurs from the same starting structure without any further reduction, according to both experimental and computational results. This computational result for the O2 reduction mechanism should be possible to evaluate experimentally. Another difference between the two substrates is that the actual OO bond cleavage barrier is low, and not involved in rate-limiting the reduction process, while the barrier connected with bond cleavage/formation in the NO reduction process is of similar height as the rate-limiting steps. We suggest that these results may be part of the explanation for the generally higher activity for O2 reduction as compared to NO reduction in most FDPs. Comparisons are also made to the O2 reduction reaction in the family of heme­copper oxidases.


Assuntos
Heme , Óxido Nítrico , Óxido Nítrico/metabolismo , Heme/química , Oxirredutases/química , Ceruloplasmina/metabolismo , Oxigênio/química , Água/metabolismo , Oxirredução
5.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430969

RESUMO

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Assuntos
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Secundária de Proteína , Macrolídeos/química , Macrolídeos/metabolismo , Heme/química , Cristalografia por Raios X
6.
Biochemistry ; 63(6): 788-796, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38417024

RESUMO

In our efforts to develop inhibitors selective for neuronal nitric oxide synthase (nNOS) over endothelial nitric oxide synthase (eNOS), we found that nNOS can undergo conformational changes in response to inhibitor binding that does not readily occur in eNOS. One change involves movement of a conserved tyrosine, which hydrogen bonds to one of the heme propionates, but in the presence of an inhibitor, changes conformation, enabling part of the inhibitor to hydrogen bond with the heme propionate. This movement does not occur as readily in eNOS and may account for the reason why these inhibitors bind more tightly to nNOS. A second structural change occurs upon the binding of a second inhibitor molecule to nNOS, displacing the pterin cofactor. Binding of this second site inhibitor requires structural changes at the dimer interface, which also occurs more readily in nNOS than in eNOS. Here, we used a combination of crystallography, mutagenesis, and computational methods to better understand the structural basis for these differences in NOS inhibitor binding. Computational results show that a conserved tyrosine near the primary inhibitor binding site is anchored more tightly in eNOS than in nNOS, allowing for less flexibility of this residue. We also find that the inefficiency of eNOS to bind a second inhibitor molecule is likely due to the tighter dimer interface in eNOS compared with nNOS. This study provides a better understanding of how subtle structural differences in NOS isoforms can result in substantial dynamic differences that can be exploited in the development of isoform-selective inhibitors.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo I , Isoformas de Proteínas/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Heme/química , Tirosina , Óxido Nítrico
7.
Microbiol Mol Biol Rev ; 88(1): e0013123, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38305743

RESUMO

SUMMARY: Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Histidina , Heme/química , Heme/metabolismo , Ferro/metabolismo , Metionina
8.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398625

RESUMO

We conducted ab initio valence bond (VB) calculations employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods to investigate the nature of the coordination bonding between ferrous heme and carbon monoxide (CO) within cytochrome P450. These calculations revealed the significant influence exerted by both proximal and equatorial ligands on the π-backdonation effect from the heme to the CO. Moreover, our VB calculations unveiled a phenomenon of synergistic charge transfer (sCT). In the case of ferrous heme-CO bonding, the significant stabilization in this sCT arises from cooperative resonance between the VB structures associated with σ donation and π backdonation. Unlike many other ligands, CO possesses the unique ability to establish two mutually perpendicular π-backdonation orbital interaction pairs, leading to an intensified stabilization attributed to σ-π resonance. Furthermore, while of a smaller energy magnitude, sCT due to one π-π pair is also present, contributing to the differential stabilization of ferrous heme-CO bonding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Heme/química
9.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
10.
Nature ; 627(8002): 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355798

RESUMO

Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.


Assuntos
NADPH Oxidase 2 , Fagócitos , Humanos , Elétrons , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/química , Heme/metabolismo , NADP/metabolismo , NADPH Oxidase 2/química , NADPH Oxidase 2/metabolismo , Fagócitos/enzimologia , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Superóxidos/metabolismo , Ligação Proteica
11.
Angew Chem Int Ed Engl ; 63(15): e202400838, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38372011

RESUMO

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen species (ROS)-related catalysis has broad applicability. Herein, inspired by porphyrin-based heme mimics, we report the synthesis of polyphthalocyanine-based conjugated polymers (Fe-PPc-AE) as a new porphyrin-evolving structure to serve as efficient and versatile artificial enzymes for augmented reactive oxygen catalysis. Owing to the structural advantages, such as enhanced π-conjugation networks and π-electron delocalization, promoted electron transfer, and unique Fe-N coordination centers, Fe-PPc-AE showed more efficient ROS-production activity in terms of Vmax and turnover numbers as compared with porphyrin-based conjugated polymers (Fe-PPor-AE), which also surpassed reported state-of-the-art artificial enzymes in their activity. More interestingly, by changing the reaction medium and substrates, Fe-PPc-AE also revealed significantly improved activity and environmental adaptivity in many other ROS-related biocatalytic processes, validating the potential of Fe-PPc-AE to replace conventional (poly)porphyrin-based heme mimics for ROS-related catalysis, biosensors, or biotherapeutics. It is suggested that this study will offer essential guidance for designing artificial enzymes based on organic molecules or polymers.


Assuntos
Heme , Porfirinas , Heme/química , Oxigênio/química , Espécies Reativas de Oxigênio , Porfirinas/química , Catálise , Polímeros
12.
Structure ; 32(4): 411-423.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325368

RESUMO

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.


Assuntos
Heme , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Microscopia Crioeletrônica , Heme/química , Proteínas de Membrana/química , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Anticorpos/metabolismo , Proteínas de Bactérias/química
13.
J Inorg Biochem ; 253: 112496, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330683

RESUMO

Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.


Assuntos
Citocromos c , Neisseria gonorrhoeae , Humanos , Oxirredução , Citocromos c/química , Oxirredutases/metabolismo , Heme/química , Ferro , Solventes
14.
Nanoscale ; 16(8): 4308-4316, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38353599

RESUMO

Iron-regulated surface determinant B (IsdB) is a surface protein of Staphylococcus aureus that plays essential roles in host cell invasion by mediating both bacterial adhesion and hemic iron acquisition. Single-molecule experiments have recently revealed that the binding of IsdB to vitronectin and integrins is dramatically strengthened under mechanical stress conditions, promoting staphylococcal adhesion. Here we conducted atomic force spectroscopy (AFS) measurements of the interaction between IsdB and hemoglobin (Hb), in both its oxidized (metHb) and reduced forms (HbCO). While the former represents the natural substrate for IsdB, the latter is resistant to heme extraction. For the unbinding between IsdB and HbCO, we obtained a linear trend in the Bell-Evans plot, indicative of a weakening of the interaction upon mechanical stress. For the unbinding between IsdB and metHb, we found similar behavior at low loading rates. Remarkably, a non-linear trend of the complex interaction force was detected at higher force-pulling rates. Such behavior may provide some cues to the ability of IsdB to form stress-dependent bonds also with Hb, possibly enabling a more efficient heme transfer through stabilization of the transient (in vivo) IsdB-Hb complex.


Assuntos
Proteínas de Bactérias , Ferro , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Hemoglobinas/química , Heme/química , Heme/metabolismo , Proteínas de Membrana/metabolismo , Ligação Proteica
15.
J Inorg Biochem ; 252: 112474, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176365

RESUMO

To study how proline residues affect the dynamics of Ω-loop D (residues 70 to 85) of cytochrome c, we prepared G83P and G83A variants of yeast iso-1-cytochrome c (iso-1-Cytc) in the presence and absence of a K73H mutation. Ω-loop D is important in controlling both the electron transfer function of Cytc and the peroxidase activity of Cytc used in apoptosis because it provides the Met80 heme ligand. The G83P and G83A mutations have no effect on the global stability of iso-1-Cytc in presence or absence of the K73H mutation. However, both mutations destabilize the His73-mediated alkaline conformer relative to the native state. pH jump stopped-flow experiments show that the dynamics of the His73-mediated alkaline transition are significantly enhanced by the G83P mutation. Gated electron transfer studies show that the enhanced dynamics result from an increased rate of return to the native state, whereas the rate of loss of Met80 ligation is unchanged by the G83P mutation. Thus, the G83P substitution does not stiffen the conformation of the native state. Because bis-His heme ligation occurs when Cytc binds to cardiolipin-containing membranes, we studied the effect of His73 ligation on the peroxidase activity of Cytc, which acts as an early signal in apoptosis by causing oxygenation of cardiolipin. We find that the His73 alkaline conformer suppresses the peroxidase activity of Cytc. Thus, the bis-His ligated state of Cytc formed upon binding to cardiolipin is a negative effector for the peroxidase activity of Cytc early in apoptosis.


Assuntos
Citocromos c , Histidina , Citocromos c/química , Histidina/química , Cardiolipinas , Saccharomyces cerevisiae/metabolismo , Heme/química , Peroxidases/genética , Peroxidases/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica
16.
J Inorg Biochem ; 252: 112482, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218138

RESUMO

Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli , Shewanella , Globinas/química , Oxigênio/metabolismo , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Biofilmes , Heme/química , Proteínas de Bactérias/química
17.
Biochemistry ; 63(4): 523-532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38264987

RESUMO

Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.


Assuntos
Globinas , Diester Fosfórico Hidrolases , Vibrio , Humanos , Diester Fosfórico Hidrolases/genética , Globinas/genética , Proteínas de Bactérias/química , Catálise , GMP Cíclico/metabolismo , Heme/química
18.
Chem Commun (Camb) ; 60(14): 1940-1943, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38273797

RESUMO

Heme bound Aß peptides have been reported to reduce O2 by 2e- to H2O2 which may result in oxidative stress commonly encountered in Alzheimer's disease. In this study we report the first instance of rapid freeze quench trapping and characterizing the heme(III)-O2˙- intermediate involved in the heme-Aß induced formation of partially reduced oxygen species (PROS) in physiologically relevant aqueous medium using absorption and resonance Raman spectroscopy. The kinetics of this process indicates a key role of the Tyr10 residue, unique to human Aß, in the generation of H2O2 from O2.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Heme/química , Peptídeos beta-Amiloides/química , Peróxido de Hidrogênio , Oxigênio
19.
J Am Chem Soc ; 146(5): 2959-2966, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270588

RESUMO

The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.


Assuntos
Diazometano , Heme , Metano/análogos & derivados , Heme/química , Modelos Moleculares , Ferro , Ciclopropanos/química , Catálise
20.
J Phys Chem B ; 128(4): 990-1000, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241470

RESUMO

Respiratory complex III (a.k.a., the bc1 complex) plays a key role in the electron transport chain in aerobic cells. The bc1 complex exhibits multiple unique electron tunneling (ET) processes, such as ET-bifurcation at the Qo site and movement of the Rieske domain. Moreover, we previously discovered that electron tunneling in the low potential arm of the bc1 complex is regulated by a key phenylalanine residue (Phe90). The main goal of the current work is to study the dynamics of the key Phe90 residue in the electron tunneling reaction between heme bL and heme bH as a function of the occupancy of the Qo and Qi binding sites in the bc1 complex. We simulated the molecular dynamics of four model systems of respiratory complex III with different ligands bound at the Qo and Qi binding sites. In addition, we calculated the electron tunneling rate constants between heme bL and heme bH along the simulated molecular dynamics trajectories. The binding of aromatic ligands at the Qo site induces a conformational cascade that properly positions the Phe90 residue, reducing the through-space ET distance from ∼7 to ∼5.5 Å and thus enhancing the electron transfer rate between the heme bL and the heme bH redox pair. Also, the binding of aromatic ligands at the Qi site induces conformational changes that stabilize the Phe90 conformational variation from ∼1.5 to ∼0.5 Å. Hence, our molecular dynamics simulation results show an on-demand two-step conformational connection between the occupancy of the Qo and Qi binding sites and the conformational dynamics of the Phe90 residue. Additionally, our dynamic electron tunneling results confirm our previously reported findings that the Phe90 residue acts as an electron-tunneling gate or switch, controlling the electron transfer rate between the heme bL and heme bH redox systems.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ligantes , Transporte de Elétrons , Oxirredução , Sítios de Ligação , Simulação de Dinâmica Molecular , Heme/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...